CHAPTER 11
 STORM DRAINAGE

SECTION 1101 GENERAL

1101.1 Scope. The provisions of this chapter shall govern the materials, design, construction and installation of storm drainage, except in one- and two-family dwellings.
1101.2 Where required. All roofs, paved areas, yards, courts and courtyards shall drain into a separate storm sewer system, or a combined sewer system, or to an approved place of disposal.
1101.3 Prohibited drainage. Storm water shall not be drained into sewers intended for sewage only.
1101.4 Tests. The conductors and the building storm drain shall be tested in accordance with Section 312.
1101.5 Continuous flow. The size of a drainage pipe shall not be reduced in the direction of flow.
1101.6 Fittings and connections. All connections and changes in direction of the storm drainage system shall be made with approved drainage-type fittings in accordance with Table 706.3. The fittings shall not obstruct or retard flow in the system.
1101.7 Roof design. Roofs shall be designed for the maximum possible depth of water that will pond thereon as determined by the relative levels of roof deck and overflow weirs, scuppers, edges or serviceable drains in combination with the deflected structural elements. In determining the maximum possible depth of water, all primary roof drainage means shall be assumed to be blocked.
1101.8 Cleanouts required. Cleanouts shall be installed in the storm drainage system and shall comply with the provisions of this code for sanitary drainage pipe cleanouts.

- Exception: Subsurface drainage system.
1101.9 Backwater valves. Backwater valves installed in a storm drainage system shall conform to Section 715.

SECTION 1102 MATERIALS

1102.1 General. The materials and methods utilized for the construction and installation of storm drainage systems shall comply with this section and the applicable provisions of Chapter 7.
1102.2 Inside storm drainage conductors. Inside storm drainage conductors installed above ground shall conform to one of the standards listed in Table 702.1.
1102.3 Underground building storm drain pipe. Underground building storm drain pipe shall conform to one of the standards listed in Table 702.2.
1102.4 Building storm sewer pipe. Building storm sewer pipe shall conform to one of the standards listed in Table 1102.4.

TABLE 1102.4
MATERILDING STORM SEWER PIPE
:---
Acrylonitrile butadiene styrene (ABS) plastic pipe
Asbestos-cement pipe
Cast-iron pipe
Concrete pipe
Copper or copper-alloy tubing (Type K, L, M or DWV)
Polyvinyl chloride (PVC) plastic pipe (Type DWV, SDR26, SDR35, SDR41, PS50 or PS100)
Vitrified clay pipe
Stainless steel drainage systems, Type 316L

1102.5 Subsoil drain pipe. Subsoil drains shall be open-jointed, horizontally split or perforated pipe conforming to one of the standards listed in Table 1102.5.

TABLE 1102.5
SUBSOIL DRAIN PIPE

MATERIAL	STANDARD
Asbestos-cement pipe	ASTM C 508
Cast-iron pipe	ASTM A 74; ASTM A 888; CISPI 301
Polyethylene (PE) plastic pipe	ASTM F 405
Polyvinyl chloride (PVC) Plastic pipe (type sewer pipe, PS25, PS50 or PS100)	$\begin{aligned} & \text { ASTM D 2729; ASTM F 891; } \\ & \text { CSA-B 182.2; } \\ & \text { CAN/CSA-B182.4 } \\ & \hline \end{aligned}$
Vitrified clay pipe	ASTM C 4; ASTM C 700
Stainless steel drainage systems, Type 316L	ASME A112.3.1

1102.6 Roof drains. Roof drains shall conform to ASME A112.21.2M or ASME A112.3.1.
1102.7 Fittings. Pipe fittings shall be approved for installation with the piping material installed, and shall conform to the respective pipe standards or one of the standards listed in Table 1102.7. The fittings shall not have ledges, shoulders or reductions capable of retarding or obstructing flow in the piping.

Threaded drainage pipe fittings shall be of the recessed drainage type.

TABLE 1102.7 PIPE FITTINGS
MATERIAL STANDARD Acrylonitrile butadiene styrene (ABS) plastic ASTM D 2468; ASTM D 2661 Cast-iron ASME B16.4; ASME B16.12; ASTM A 888; CISPI 301; ASTM A 74 Chlorinated polyvinyl chloride (CPVC) plastic ASTM F 437; ASTM F 438; ASTM F 439 Copper or copper alloy ASME B16.15; ASME B16.18; ASME B16.22; ASME B16.23; ASME B16.26; ASME B16.29 Gray iron and ductile iron AWWA C110 Malleable iron ASME B16.3 Plastic, general ASTM F 409 Polyethylene (PE) plastic ASTM D 2609 Polyvinyl chloride (PVC) plastic ASTM D 2464; ASTM D 2466; ASTM D 2467; CSA-B137.2; ASTM D 266; ASTM F 1866 (10 inches diameter and larger) Steel ASME B16.9; ASME B16.11; ASME B16.28 Stainless steel drainage Systems, Type 316L
ASME A112.3.1

SECTION 1103
 TRAPS

1103.1 Main trap. Leaders and storm drains connected to a combined sewer shall be trapped. Individual storm water traps shall be installed on the storm water drain branch serving each conductor, or a single trap shall be installed in the main storm drain just before its connection with the combined building sewer or the public sewer.
1103.2 Material. Storm water traps shall be of the same material as the piping system to which they are attached.
1103.3 Size. Traps for individual conductors shall be the same size as the horizontal drain to which they are connected.
1103.4 Cleanout. An accessible cleanout shall be installed on the building side of the trap.

SECTION 1104
 CONDUCTORS AND CONNECTIONS

1104.1 Prohibited use. Conductor pipes shall not be used as soil, waste or vent pipes, and soil, waste or vent pipes shall not be used as conductors.
1104.2 Combining storm with sanitary drainage. The sanitary and storm drainage systems of a structure shall be entirely
separate except where combined sewer systems are utilized. Where a combined sewer is utilized, the building storm drain shall be connected in the same horizontal plane through a sin-gle-wye fitting to the combined sewer at least 10 feet (3048 mm) downstream from any soil stack.
1104.3 Floor drains. Floor drains shall not be connected to a storm drain.

SECTION 1105 ROOF DRAINS

1105.1 Strainers. Roof drains shall have strainers extending not less than 4 inches (102 mm) above the surface of the roof immediately adjacent to the roof drain. Strainers shall have an available inlet area, above roof level, of not less than one and one-half times the area of the conductor or leader to which the drain is connected.
1105.2 Flat decks. Roof drain strainers for use on sun decks, parking decks and similar areas that are normally serviced and maintained shall comply with Section 1105.1 or shall be of the flat-surface type, installed level with the deck, with an available inlet area not less than two times the area of the conductor or leader to which the drain is connected.
1105.3 Roof drain flashings. The connection between roofs and roof drains which pass through the roof and into the interior of the building shall be made water tight by the use of approved flashing material.

SECTION 1106

SIZE OF CONDUCTORS, LEADERS AND STORM DRAINS

1106.1 General. The size of the vertical conductors and leaders, building storm drains, building storm sewers, and any horizontal branches of such drains or sewers shall be based on the 100-year hourly rainfall rate indicated in Figure 1106.1 or on other rainfall rates determined from approved local weather data.
1106.2 Vertical conductors and leaders. Vertical conductors and leaders shall be sized for the maximum projected roof area, in accordance with Table 1106.2.
1106.3 Building storm drains and sewers. The size of the building storm drain, building storm sewer and their horizontal branches having a slope of one-half unit or less vertical in 12 units horizontal (4-percent slope) shall be based on the maximum projected roof area in accordance with Table 1106.3. The minimum slope of horizontal branches shall be one-eighth unit vertical in 12 units horizontal (1-percent slope) unless otherwise approved.
1106.4 Vertical walls. In sizing roof drains and storm drainage piping, one-half of the area of any vertical wall that diverts rainwater to the roof shall be added to the projected roof area for inclusion in calculating the required size of vertical conductors, leaders and horizontal storm drainage piping.
1106.5 Parapet wall scupper location. Parapet wall roof drainage scupper and overflow scupper location shall comply

FIGURE 1106.1
100-YEAR, 1-HOUR RAINFALL (INCHES/HOUR) NORTH CAROLINA FOR PRIMARY ROOF DRAINS

[^0]Source: National Weather Service, National Oceanic and Atmospheric Administration, Washington D.C.

For SI: 1 inch $=25.4 \mathrm{~mm}$.
Source: National Weather Service, National Oceanic and Atmospheric Administration, Washington D.C.
with the requirements of Figure 1107.3 from the International Plumbing Code Commentary.
1106.6 Size of roof gutters. The size of semicircular gutters shall be based on the maximum projected roof area in accordance with Table 1106.6.

SECTION 1107 SECONDARY (EMERGENCY) ROOF DRAINS

1107.1 Secondary drainage required. Secondary (emergency) roof drains or scuppers shall be provided where the roof perimeter construction extends above the roof in such a manner that water will be entrapped if the primary drains allow buildup for any reason.
1107.2 Separate systems required. Secondary roof drain systems shall have the end point of discharge separate from the primary system. Discharge shall be above grade, in a location which would normally be observed by the building occupants or maintenance personnel.
1107.3 Sizing of secondary drains. Secondary (emergency) roof drain systems shall be sized in accordance with Section 1106 based on the rainfall rate indicated in Figure 1106.1(a). Scuppers shall be sized to prevent the depth of ponding water from exceeding that for which the roof was designed as determined by Section 1101.7. Scuppers shall not have an opening dimension of less than 4 inches (102 mm). The flow through the primary system shall not be considered when sizing the secondary roof drain system.

SECTION 1108 COMBINED SANITARY AND STORM SYSTEM

1108.1 Size of combined drains and sewers. The size of a combination sanitary and storm drain or sewer shall be computed in accordance with the method in Section 1106.3. The fixture units shall be converted into an equivalent projected roof or paved area. Where the total fixture load on the combined drain is less than or equal to 256 fixture units, the equivalent drainage area in horizontal projection shall be taken as 4,000 square feet ($372 \mathrm{~m}^{2}$). Where the total fixture load exceeds 256 fixture units, each additional fixture unit shall be considered the equivalent of 15.6 square feet $\left(1.5 \mathrm{~m}^{2}\right)$ of drainage area. These values are based on a rainfall rate of 1 inch (25 mm) per hour.

SECTION 1109
 VALUES FOR CONTINUOUS FLOW

1109.1 Equivalent roof area. Where there is a continuous or semicontinuous discharge into the building storm drain or building storm sewer, such as from a pump, ejector, air conditioning plant or similar device, each gallon per minute $(\mathrm{L} / \mathrm{m})$ of such discharge shall be computed as being equivalent to 96 square feet ($9 \mathrm{~m}^{2}$) of roof area, based on a rainfall rate of 1 inch $(25 \mathrm{~mm})$ per hour.

SECTION 1110 CONTROLLED FLOW ROOF DRAIN SYSTEMS

1110.1 General. The roof of a structure shall be designed for the storage of water where the storm drainage system is engineered for controlled flow. The controlled flow roof drain system shall be an engineered system in accordance with this section and the design, submittal, approval, inspection and testing requirements of Section 105.4. The controlled flow system shall be designed based on the required rainfall rate in accordance with Section 1106.1.
1110.2 Control devices. The control devices shall be installed so that the rate of discharge of water per minute shall not exceed the values for continuous flow as indicated in Section 1109.1.
1110.3 Installation. Runoff control shall be by control devices. Control devices shall be protected by strainers.
1110.4 Minimum number of roof drains. Not less than two roof drains shall be installed in roof areas 10,000 square feet ($929 \mathrm{~m}^{2}$) or less and not less than four roof drains shall be installed in roofs over 10,000 square feet $\left(929 \mathrm{~m}^{2}\right)$ in area.

SECTION 1111 SUBSOIL DRAINS

1111.1 Subsoil drains. Subsoil drains shall be open-jointed, horizontally split or perforated pipe conforming to one of the standards listed in Table 1102.5. Such drains shall not be less than 4 inches (102 mm) in diameter. Where the building is subject to backwater, the subsoil drain shall be protected by an accessibly located backwater valve. Subsoil drains shall discharge to a trapped area drain, sump, dry well or approved location above ground. The subsoil sump shall not be required to have either a gas-tight cover or a vent. The sump and pumping system shall comply with Section 1113.1.

SECTION 1112 BUILDING SUBDRAINS

1112.1 Building subdrains. Building subdrains located below the public sewer level shall discharge into a sump or receiving tank, the contents of which shall be automatically lifted and discharged into the drainage system as required for building sumps. The sump and pumping equipment shall comply with Section 1113.1.

SECTION 1113 SUMPS AND PUMPING SYSTEMS

1113.1 Pumping system. The sump pump, pit and discharge piping shall conform to Sections 1113.1.1 through 1113.1.4.
1113.1.1 Pump capacity and head. The sump pump shall be of a capacity and head appropriate to anticipated use requirements.
1113.1.2 Sump pit. The sump pit shall not be less than 18 inches (457 mm) in diameter and 24 inches (610 mm) deep, unless otherwise approved. The pit shall be accessible and located such that all drainage flows into the pit by gravity. The sump pit shall be constructed of tile, steel, plastic,

TABLE 1106.2
SIZE OF VERTICAL CONDUCTORS AND LEADERS

DIAMETER OF OF LEADER (inches) ${ }^{\text {a }}$	HORIZONTALLY PROJECTED ROOF AREA (square feet)											
	Rainfall rate (inches per hour)											
	1	2	3	4	5	6	7	8	9	10	11	12
2	2,880	1,440	960	720	575	480	410	360	320	290	260	240
3	8,800	4,400	2,930	2,200	1,760	1,470	1,260	1,100	980	880	800	730
4	18,400	9,200	6,130	4,600	3,680	3,070	2,630	2,300	2,045	1,840	1,675	1,530
5	34,600	17,300	11,530	8,650	6,920	5,765	4,945	4,325	3,845	3,460	3,145	2,880
6	54,000	27,000	17,995	13,500	10,800	9,000	7,715	6,750	6,000	5,400	4,910	4,500
8	116,000	58,000	38,660	29,000	23,200	19,315	16,570	14,500	12,890	11,600	10,545	9,600

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. Sizes indicated are the diameter of circular piping. This table is applicable to piping of other shapes provided the cross-sectional shape fully encloses a circle of the diameter indicated in this table.

TABLE 1106.3
SIZE OF HORIZONTAL STORM DRAINGE PIPING ${ }^{\text {a }}$

	HORIZONTALLY PROJECTED ROOF AREA (square feet)					
	Rainfall rate (inches per hour)					
	1	2	3	4	5	6
$1 / 8$ unit vertical in 12 units horizontal (1-percent slope)						
3	3,288	1,644	1,096	822	657	548
4	7,520	3,760	2,506	1,800	1,504	1,253
5	13,360	6,680	4,453	3,340	2,672	2,227
6	21,400	10,700	7,133	5,350	4,280	3,566
8	46,000	23,000	15,330	11,500	9,200	7,600
10	82,800	41,400	27,600	20,700	16,580	13,800
12	133,200	66,600	44,400	33,300	26,650	22,200
15	218,000	109,000	72,800	59,500	47,600	39,650
$1 / 4$ unit vertical in 12 units horizontal (2-percent slope)						
3	4,640	2,320	1,546	1,160	928	773
4	10,600	5,300	3,533	2,650	2,120	1,766
5	18,880	9,440	6,293	4,720	3,776	3,146
6	30,200	15,100	10,066	7,550	6,040	5,033
8	65,200	32,600	21,733	16,300	13,040	10,866
10	116,800	58,400	38,950	29,200	23,350	19,450
12	188,000	94,000	62,600	47,000	37,600	31,350
15	336,000	168,000	112,000	84,000	67,250	56,000
$1 / 2$ unit vertical in 12 units horizontal (4-percent slope)						
3	6,576	3,288	2,295	1,644	1,310	1,096
4	15,040	7,520	5,010	3,760	3,010	2,500
5	26,720	13,360	8,900	6,680	5,320	4,450
6	42,800	21,400	13,700	10,700	8,580	7,140
8	92,000	46,000	30,650	23,000	18,400	15,320
10	171,600	85,800	55,200	41,400	33,150	27,600
12	266,400	133,200	88,800	66,600	53,200	44,400
15	476,000	238,000	158,800	119,000	95,300	79,250

For SI: $\quad 1$ inch $=25.4 \mathrm{~mm}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. For Tables 1106.3 and 1106.6, when rainfall rates exceed 6 inches per hour, then the figures for roof area shall be adjusted proportionally by multiplying the figure by six and dividing by the maximum rate of rainfall in inches per hour (see Figure 1106.1(a).

TABLE 1106.6
SIZE OF SEMICIRCULAR ROOF GUTTERS ${ }^{\text {a }}$

DIAMETER OF GUTTERS (inches)	HORIZONTALLY PROJECTED ROOF AREA (square feet)					
	Rainfall rate (inches per hour)					
	1	2	3	4	5	6
$1 / 16$ unit vertical in 12 units horizontal (0.5-percent slope)						
3	680	340	226	170	136	113
4	1,440	720	480	360	288	240
5	2,500	1,250	834	625	500	416
6	3,840	1,920	1,280	960	768	640
7	5,520	2,760	1,840	1,380	1,100	918
8	7,960	3,980	2,655	1,990	1,590	1,325
10	14,400	7,200	4,800	3,600	2,880	2,400
$1 / 8$ unit vertical 12 units horizontal (1-percent slope)						
3	960	480	320	240	192	160
4	2,040	1,020	681	510	408	340
5	3,520	1,760	1,172	880	704	587
6	5,440	2,720	1,815	1,360	1,085	905
7	7,800	3,900	2,600	1,950	1,560	1,300
8	11,200	5,600	3,740	2,800	2,240	1,870
10	20,400	10,200	6,800	5,100	4,080	3,400
$1 / 4$ unit vertical in 12 units horizontal (2-percent slope)						
3	1,360	680	454	340	272	226
4	2,880	1,440	960	720	576	480
5	5,000	2,500	1,668	1,250	1,000	834
6	7,680	3,840	2,560	1,920	1,536	1,280
7	11,040	5,520	3,860	2,760	2,205	1,840
8	15,920	7,960	5,310	3,980	3,180	2,655
10	28,800	14,400	9,600	7,200	5,750	4,800
$1 / 2$ unit vertical in 12 units horizontal (4-percent)						
3	1,920	960	640	480	384	320
4	4,080	2,040	1,360	1,020	816	680
5	7,080	3,540	2,360	1,770	1,415	1,180
6	11,080	5,540	3,695	2,770	2,220	1,850
7	15,600	7,800	5,200	3,900	3,120	2,600
8	22,400	11,200	7,460	5,600	4,480	3,730
10	40,000	20,000	13,330	10,000	8,000	6,660

For SI: 1 inch $=25.4 \mathrm{~mm}, 1$ square foot $=0.0929 \mathrm{~m}^{2}$.
a. For Tables 1106.3 and 1106.6, when rainfall rates exceed 6 inches per hour, then the figures for roof area shall be adjusted proportionally by multiplying the figure by six and dividing by the maximum rate of rainfall in inches per hour (see Figure 1106.1(a).
cast-iron, concrete or other approved material, with a removable cover adequate to support anticipated loads in the area of use. The pit floor shall be solid and provide permanent support for the pump.
1113.1.3 Electrical. Electrical service outlets, when required, shall meet the requirements of the ICC Electrical Code.
1113.1.4 Piping. Discharge piping shall meet the requirements of Section 1102.2, 1102.3 or 1102.4 and shall include a gate valve and a full flow check valve. Pipe and fittings shall be the same size as, or larger than, pump discharge tapping.

Exception: In one- and two-family dwellings, only a check valve shall be required, located on the discharge piping from the pump or ejector.

[^0]: For SI: 1 inch $=25.4 \mathrm{~mm}$.

